\u003Cm:sty m:val=\"p\"/>\u003C/m:rPr>∆\u003C/m:r>\u003Cm:r>\u003Cm:rPr>\u003Cm:scr m:val=\"roman\"/>\u003Cm:sty\n m:val=\"p\"/>\u003C/m:rPr>T\u003C/m:r>\u003Cm:r>\u003Cm:rPr>\u003Cm:scr m:val=\"roman\"/>\u003Cm:sty m:val=\"p\"/>\u003C/m:rPr>=\u003C/m:r>\u003C/span>\u003Cm:f>\u003Cm:fPr>\u003Cspan\n style='font-size:10.0pt;mso-ansi-font-size:10.0pt;mso-bidi-font-size:10.0pt;\n font-family:\"Cambria Math\",serif;mso-ascii-font-family:\"Cambria Math\";\n mso-hansi-font-family:\"Cambria Math\"'>\u003Cm:ctrlPr>\u003C/m:ctrlPr>\u003C/span>\u003C/m:fPr>\u003Cm:num>\u003Ci\n style='mso-bidi-font-style:normal'>\u003Cspan lang=EN-US style='font-size:10.0pt;\n font-family:\"Cambria Math\",serif'>\u003Cm:r>L\u003C/m:r>\u003C/span>\u003C/i>\u003C/m:num>\u003Cm:den>\u003Ci\n style='mso-bidi-font-style:normal'>\u003Cspan lang=EN-US style='font-size:10.0pt;\n font-family:\"Cambria Math\",serif'>\u003Cm:r>c\u003C/m:r>\u003C/span>\u003C/i>\u003C/m:den>\u003C/m:f>\u003C/m:oMath>\u003C/m:oMathPara>\u003C![endif]-->\u003C!-- [if !msEquation]-->\u003C!--[endif]-->\u003C/span>\u003C/p>\n\u003Cp> Thus, controlling the lead screw and rail system for a distance of 1 mm corresponds to a delay time of 3.33 picoseconds.\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-indent: 21pt; text-align: center;\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">\u003Cimg src=\"https://images.lbtek.com/FuE3nf7Gd4oEW9Bg75CFMJhVufsp\" width=\"291\" height=\"149\">\u003C/span>\u003C/p>\n\u003Cp style=\"text-align: center;\">Figure\u003Cspan lang=\"EN-US\">3 \u003C/span>Delay Test Schematic for Fiber Optical Delay Line (Round-Trip)\u003C/p>\n\u003Cp> It is noteworthy that, as shown in Figure 3, in the LBTEK variable fiber optic delay line model LBODL-600, a movable mirror is used, so the light travels twice the distance, and the delay time ΔT is generally the ratio of twice the delay distance 2L to the speed of light in air c:\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-indent: 20pt; text-align: center;\">\u003Cspan lang=\"EN-US\" style=\"font-size: 10pt; font-family: 'microsoft yahei';\"> \u003Cspan class=\"math-tex\">\\( \\Delta T = \\frac{2L}{c} \\) \u003C/span>\u003C/span>\u003C/p>\n\u003Cp>\u003Cspan lang=\"EN-US\"> Thus, controlling the lead screw and rail system for a distance of 1 mm corresponds to a delay time of 6.67 picoseconds.\u003C/span>\u003C/p>\n\u003Cp>\u003Cstrong>(\u003Cspan lang=\"EN-US\">2\u003C/span>)Insertion Loss \u003C/strong>\u003C/p>\n\u003Cp> It refers to the additional loss generated as the light signal passes through the fiber optical delay line, defined as the ratio of the optical power at the output port to that at the input port, i.e.:\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-indent: 21pt; text-align: center;\">\u003Cspan class=\"math-tex\">\\( IL = 10 \\log \\frac{P_{out}}{P_{in}} \\) \u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-align: center;\" align=\"center\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">\u003C!-- [if gte msEquation 12]>\u003Cm:oMathPara>\u003Cm:oMath>\u003Cspan\n lang=EN-US style='font-family:\"Cambria Math\",serif'>\u003Cm:r>\u003Cm:rPr>\u003Cm:scr m:val=\"roman\"/>\u003Cm:sty\n m:val=\"p\"/>\u003C/m:rPr>IL\u003C/m:r>\u003Cm:r>\u003Cm:rPr>\u003Cm:scr m:val=\"roman\"/>\u003Cm:sty m:val=\"p\"/>\u003C/m:rPr>=10\u003C/m:r>\u003Cm:r>\u003Cm:rPr>\u003Cm:scr\n m:val=\"roman\"/>\u003Cm:sty m:val=\"p\"/>\u003C/m:rPr>lg\u003C/m:r>\u003C/span>\u003Cm:f>\u003Cm:fPr>\u003Cspan\n style='font-family:\"Cambria Math\",serif;mso-ascii-font-family:\"Cambria Math\";\n mso-hansi-font-family:\"Cambria Math\"'>\u003Cm:ctrlPr>\u003C/m:ctrlPr>\u003C/span>\u003C/m:fPr>\u003Cm:num>\u003Cm:sSub>\u003Cm:sSubPr>\u003Cspan\n style='font-family:\"Cambria Math\",serif;mso-ascii-font-family:\"Cambria Math\";\n mso-hansi-font-family:\"Cambria Math\";font-style:italic;mso-bidi-font-style:\n normal'>\u003Cm:ctrlPr>\u003C/m:ctrlPr>\u003C/span>\u003C/m:sSubPr>\u003Cm:e>\u003Ci style='mso-bidi-font-style:\n normal'>\u003Cspan lang=EN-US style='font-family:\"Cambria Math\",serif'>\u003Cm:r>P\u003C/m:r>\u003C/span>\u003C/i>\u003C/m:e>\u003Cm:sub>\u003Ci\n style='mso-bidi-font-style:normal'>\u003Cspan lang=EN-US style='font-family:\n \"Cambria Math\",serif'>\u003Cm:r>out\u003C/m:r>\u003C/span>\u003C/i>\u003C/m:sub>\u003C/m:sSub>\u003C/m:num>\u003Cm:den>\u003Cm:sSub>\u003Cm:sSubPr>\u003Cspan\n style='font-family:\"Cambria Math\",serif;mso-ascii-font-family:\"Cambria Math\";\n mso-hansi-font-family:\"Cambria Math\";font-style:italic;mso-bidi-font-style:\n normal'>\u003Cm:ctrlPr>\u003C/m:ctrlPr>\u003C/span>\u003C/m:sSubPr>\u003Cm:e>\u003Ci style='mso-bidi-font-style:\n normal'>\u003Cspan lang=EN-US style='font-family:\"Cambria Math\",serif'>\u003Cm:r>P\u003C/m:r>\u003C/span>\u003C/i>\u003C/m:e>\u003Cm:sub>\u003Ci\n style='mso-bidi-font-style:normal'>\u003Cspan lang=EN-US style='font-family:\n \"Cambria Math\",serif'>\u003Cm:r>in\u003C/m:r>\u003C/span>\u003C/i>\u003C/m:sub>\u003C/m:sSub>\u003C/m:den>\u003C/m:f>\u003C/m:oMath>\u003C/m:oMathPara>\u003C![endif]-->\u003C!-- [if !msEquation]-->\u003C!--[endif]-->\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-align: center;\" align=\"center\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">\u003C!-- [if gte msEquation 12]>\u003Cm:oMathPara>\u003Cm:oMath>\u003Cspan\n lang=EN-US style='font-family:\"Cambria Math\",serif'>\u003Cm:r>\u003Cm:rPr>\u003Cm:scr m:val=\"roman\"/>\u003Cm:sty\n m:val=\"p\"/>\u003C/m:rPr>IL\u003C/m:r>\u003Cm:r>\u003Cm:rPr>\u003Cm:scr m:val=\"roman\"/>\u003Cm:sty m:val=\"p\"/>\u003C/m:rPr>=10\u003C/m:r>\u003Cm:r>\u003Cm:rPr>\u003Cm:scr\n m:val=\"roman\"/>\u003Cm:sty m:val=\"p\"/>\u003C/m:rPr>lg\u003C/m:r>\u003C/span>\u003Cm:f>\u003Cm:fPr>\u003Cspan\n style='font-family:\"Cambria Math\",serif;mso-ascii-font-family:\"Cambria Math\";\n mso-hansi-font-family:\"Cambria Math\"'>\u003Cm:ctrlPr>\u003C/m:ctrlPr>\u003C/span>\u003C/m:fPr>\u003Cm:num>\u003Cm:sSub>\u003Cm:sSubPr>\u003Cspan\n style='font-family:\"Cambria Math\",serif;mso-ascii-font-family:\"Cambria Math\";\n mso-hansi-font-family:\"Cambria Math\";font-style:italic;mso-bidi-font-style:\n normal'>\u003Cm:ctrlPr>\u003C/m:ctrlPr>\u003C/span>\u003C/m:sSubPr>\u003Cm:e>\u003Ci style='mso-bidi-font-style:\n normal'>\u003Cspan lang=EN-US style='font-family:\"Cambria Math\",serif'>\u003Cm:r>P\u003C/m:r>\u003C/span>\u003C/i>\u003C/m:e>\u003Cm:sub>\u003Ci\n style='mso-bidi-font-style:normal'>\u003Cspan lang=EN-US style='font-family:\n \"Cambria Math\",serif'>\u003Cm:r>out\u003C/m:r>\u003C/span>\u003C/i>\u003C/m:sub>\u003C/m:sSub>\u003C/m:num>\u003Cm:den>\u003Cm:sSub>\u003Cm:sSubPr>\u003Cspan\n style='font-family:\"Cambria Math\",serif;mso-ascii-font-family:\"Cambria Math\";\n mso-hansi-font-family:\"Cambria Math\";font-style:italic;mso-bidi-font-style:\n normal'>\u003Cm:ctrlPr>\u003C/m:ctrlPr>\u003C/span>\u003C/m:sSubPr>\u003Cm:e>\u003Ci style='mso-bidi-font-style:\n normal'>\u003Cspan lang=EN-US style='font-family:\"Cambria Math\",serif'>\u003Cm:r>P\u003C/m:r>\u003C/span>\u003C/i>\u003C/m:e>\u003Cm:sub>\u003Ci\n style='mso-bidi-font-style:normal'>\u003Cspan lang=EN-US style='font-family:\n \"Cambria Math\",serif'>\u003Cm:r>in\u003C/m:r>\u003C/span>\u003C/i>\u003C/m:sub>\u003C/m:sSub>\u003C/m:den>\u003C/m:f>\u003C/m:oMath>\u003C/m:oMathPara>\u003C![endif]-->\u003C!-- [if !msEquation]-->\u003C!--[endif]-->\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-align: center;\" align=\"center\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">\u003C!-- [if gte msEquation 12]>\u003Cm:oMathPara>\u003Cm:oMath>\u003Cspan\n lang=EN-US style='font-family:\"Cambria Math\",serif'>\u003Cm:r>\u003Cm:rPr>\u003Cm:scr m:val=\"roman\"/>\u003Cm:sty\n m:val=\"p\"/>\u003C/m:rPr>IL\u003C/m:r>\u003Cm:r>\u003Cm:rPr>\u003Cm:scr m:val=\"roman\"/>\u003Cm:sty m:val=\"p\"/>\u003C/m:rPr>=10\u003C/m:r>\u003Cm:r>\u003Cm:rPr>\u003Cm:scr\n m:val=\"roman\"/>\u003Cm:sty m:val=\"p\"/>\u003C/m:rPr>lg\u003C/m:r>\u003C/span>\u003Cm:f>\u003Cm:fPr>\u003Cspan\n style='font-family:\"Cambria Math\",serif;mso-ascii-font-family:\"Cambria Math\";\n mso-hansi-font-family:\"Cambria Math\"'>\u003Cm:ctrlPr>\u003C/m:ctrlPr>\u003C/span>\u003C/m:fPr>\u003Cm:num>\u003Cm:sSub>\u003Cm:sSubPr>\u003Cspan\n style='font-family:\"Cambria Math\",serif;mso-ascii-font-family:\"Cambria Math\";\n mso-hansi-font-family:\"Cambria Math\";font-style:italic;mso-bidi-font-style:\n normal'>\u003Cm:ctrlPr>\u003C/m:ctrlPr>\u003C/span>\u003C/m:sSubPr>\u003Cm:e>\u003Ci style='mso-bidi-font-style:\n normal'>\u003Cspan lang=EN-US style='font-family:\"Cambria Math\",serif'>\u003Cm:r>P\u003C/m:r>\u003C/span>\u003C/i>\u003C/m:e>\u003Cm:sub>\u003Ci\n style='mso-bidi-font-style:normal'>\u003Cspan lang=EN-US style='font-family:\n \"Cambria Math\",serif'>\u003Cm:r>out\u003C/m:r>\u003C/span>\u003C/i>\u003C/m:sub>\u003C/m:sSub>\u003C/m:num>\u003Cm:den>\u003Cm:sSub>\u003Cm:sSubPr>\u003Cspan\n style='font-family:\"Cambria Math\",serif;mso-ascii-font-family:\"Cambria Math\";\n mso-hansi-font-family:\"Cambria Math\";font-style:italic;mso-bidi-font-style:\n normal'>\u003Cm:ctrlPr>\u003C/m:ctrlPr>\u003C/span>\u003C/m:sSubPr>\u003Cm:e>\u003Ci style='mso-bidi-font-style:\n normal'>\u003Cspan lang=EN-US style='font-family:\"Cambria Math\",serif'>\u003Cm:r>P\u003C/m:r>\u003C/span>\u003C/i>\u003C/m:e>\u003Cm:sub>\u003Ci\n style='mso-bidi-font-style:normal'>\u003Cspan lang=EN-US style='font-family:\n \"Cambria Math\",serif'>\u003Cm:r>in\u003C/m:r>\u003C/span>\u003C/i>\u003C/m:sub>\u003C/m:sSub>\u003C/m:den>\u003C/m:f>\u003C/m:oMath>\u003C/m:oMathPara>\u003C![endif]-->\u003C!-- [if !msEquation]-->\u003C!--[endif]-->\u003C/span>\u003C/p>\n\u003Cp> Where: \u003Cspan aria-hidden=\"true\">P\u003Csub>out\u003C/sub> \u003C/span>is the optical power at the output port, and \u003Cspan aria-hidden=\"true\">P\u003Csub>in\u003C/sub>\u003C/span>\u003Cspan aria-hidden=\"true\">\u003C/span> is the optical power at the input port. The performance requirement for the device is that the insertion loss for normally incident light should be as low as possible.\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-align: center; text-indent: 21.0pt; mso-char-indent-count: 2.0;\" align=\"center\"> \u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-align: center;\" align=\"center\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">\u003Cimg src=\"https://images.lbtek.com/FpfYez21_UNX-xW5RJZEswC9fg4c\" alt=\"\" width=\"523\" height=\"107\">\u003C/span>\u003C/p>\n\u003Cp align=\"center\">Figure 4\u003Cspan lang=\"EN-US\"> \u003C/span>Schematic diagram of insertion loss testing for optical delay line\u003C/p>\n\u003Cp> Taking Figure 4 as an example, if the input optical power at the Input end is 100 mW, and the output optical power at the Output end is 89 mW, then the insertion loss IL at the Output end is:\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-align: center;\" align=\"center\">\u003Cspan class=\"math-tex\">\\( IL = 10 \\times \\log(89/100) \\) \u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-align: center;\" align=\"center\"> \u003Cspan class=\"math-tex\">\\( = 10 \\times (-0.05) \\) \u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-align: left;\" align=\"center\"> \u003C/p>",{"productTabNameId":280,"tabName":284},"Tutorial",{"id":286,"listId":78,"productTabNameId":287,"langInfo":288,"tabNameLangInfo":290},1538,4,{"productTabId":286,"tabContent":289},"\u003Cp>\u003Cstrong>\u003Cspan lang=\"EN-US\">1.\u003C/span>Optical Coherence Tomography—OCTTechnology\u003C/strong>\u003C/p>\n\u003Cp class=\"MsoNormal\"> \u003C/p>\n\u003Cp class=\"MsoNormal\"> \u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-align: center;\" align=\"center\">\u003Cimg src=\"https://images.lbtek.com/FtbKU9ZQd06Xk_-iUWgWYl83mNB8\" width=\"424\" height=\"338\">\u003C/p>\n\u003Cp> Optical Coherence Tomography (OCT) is a high-resolution, non-invasive optical imaging technique that can be used for eye examinations, skin inspections, soft tissue cancer screening, and endoscopic biopsies.\u003C/p>\n\u003Cp> OCT is the first medical imaging technology based on the principle of optical coherence. Its basic structure is a Michelson interferometer. As shown in Figure 1, the low-coherence light emitted by the source is split into two beams by a beam splitter. One beam illuminates the sample to be measured, and the backscattered light returns along the original path. The other beam is reflected by a mirror and interferes with the backscattered light from the object, which is then received by the detector. Since interference can only occur when the optical path difference between the two beams matches, an optical delay line can be added in front of the mirror to achieve multi-stage delay and perform longitudinal scanning. By obtaining the interference signals from various points within the sample, the intensity of the measured interference signals reflects the internal structure of the sample, thereby generating a tomographic image of the sample’s interior.\u003C/p>\n\u003Col start=\"2\">\n\u003Cli style=\"font-weight: bold;\">\u003Cstrong>Laser Rangefinder Accuracy Detection System \u003C/strong>\u003C/li>\n\u003C/ol>\n\u003Cp>\u003Cimg style=\"display: block; margin-left: auto; margin-right: auto;\" src=\"https://images.lbtek.com/mall/tinymce/Ft75gGkW4Tnzg19IioMb-or1YbHD-Ft75gGkW4Tnzg19IioMb-or1YbHD.jpg\">\u003C/p>\n\u003Cp> \u003C/p>\n\u003Cp style=\"text-align: center;\">Figure 2 Laser Rangefinder Accuracy Detection System\u003C/p>\n\u003Cp> A laser rangefinder is an instrument that accurately measures the distance to an object by modulating a parameter of the laser. It is widely used in topographic surveying, battlefield measurement, industrial measurement and control, and other fields. For a laser rangefinder, accuracy is one of the most important parameters of the device. The ability to monitor accuracy in real-time, quickly judge, and calibrate is of great significance for the application of laser rangefinders.\u003C/p>\n\u003Cp> The laser rangefinder accuracy detection system consists of four modules: transmission, reception, emission, and attenuation. As shown in Figure 2, the main component of the transmission part is a fiber optic delay line. To detect the long-distance space laser ranging parameters simply, accurately, and quantitatively, the fiber optical delay line controls the delay of the optical signal, realizing space ranging simulation. The receiving and emitting ends of the detection system are connected by a fiber optical delay line, which has been precisely calibrated for optical path length. At this point, using the rangefinder to measure the distance, the emitted laser is transmitted through the fiber optic delay line to the rangefinder’s receiving end. By comparing the rangefinder’s reading with the delay distance, the ranging accuracy error of the rangefinder can be obtained. Moreover, as an optical signal processing device, the fiber optical delay line has advantages such as low loss, high stability and reliability, miniaturization, low constraint by the natural environment, and no electromagnetic interference, making it well-suited for the laser rangefinder accuracy detection system.\u003C/p>\n\u003Cp>References:\u003C/p>\n\u003Cp>[1] Wang Liyu. OCT System Research [D]. Changchun University of Science and Technology, 2008.\u003C/p>\n\u003Cp>[2] Chen Hao. Laser Rangefinder Ranging Accuracy Detection System Based on Fiber Optic Delay Line [D]. Nanjing University of Science and Technology, 2016.\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-align: left;\" align=\"center\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\"> \u003C/span>\u003C/p>",{"productTabNameId":287,"tabName":291},"Application",["Reactive",293],{"$snuxt-i18n-meta":294},{},["Set"],["ShallowReactive",297],{"$fvpUpa8LH8tCwp-18lSLZ5DkPh0mhQrRmdb45RQuidoo":-1,"$fKUUIOjAeSHVCatg9x5tBVcMjPfqAmR42SkHRWrV1m4k":-1,"$fe5mYifNnlzDjeJTE42jfN2AMR1l69DJAc70mr1PzxFg":-1},"/product/658?fid=129&tid=426",{"myAppGlobalStore":300,"myAppCartStore":313,"MetayImgPreviewStore":319,"myServiceModalStore":325,"myAppCompareStore":327},{"sessionId":301,"token":302,"surveyLink":304,"navCategory":305,"topAds":308,"feedbackType":310},["Ref",75],["EmptyRef",303],"_",["Ref",74],["Ref",306],["Reactive",307],[14,19,24,29,34,39,44,49,54,59,64],["Ref",309],["Reactive",12],["Ref",311],["Reactive",312],[],{"cartNum":314,"cartData":316},["EmptyRef",315],"0",["Ref",317],["Reactive",318],{},{"visible":320,"previreList":322},["EmptyRef",321],"false",["Ref",323],["Reactive",324],[],{"visible":326},["EmptyRef",321],{"compareIds":328,"compareList":331,"compareVisible":334},["Ref",329],["Reactive",330],[],["Ref",332],["Reactive",333],[],["EmptyRef",321]]