\u003Ca class=\"lb-file\" href=\"/uploads/files/others/Sapphire Window.xls\" target=\"_blank\" rel=\"noopener\">\u003Cimg style=\"width: 600px;\" src=\"https://images.lbtek.com/download.jpg\" />\u003C/a>\u003C/p>",{"productTabNameId":81,"tabName":234},"Curve",{"id":236,"listId":78,"productTabNameId":95,"langInfo":237,"tabNameLangInfo":239},263,{"productTabId":236,"tabContent":238},"\u003Cp class=\"MsoNormal\" align=\"center\">\u003Cstrong>\u003Cspan class=\"15\">Window Wafers\u003C/span>\u003C/strong>\u003C/p>\n\u003Cp class=\"MsoNormal\">\u003Cspan style=\"font-size: 10pt;\">I.\u003Cspan style=\"font-family: 微软雅黑;\"> Definition\u003C/span>\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\">\u003Cspan style=\"font-family: 微软雅黑; font-size: 10pt;\"> Parallel flat wafers, made of glass material for optical systems without changing the system's magnification, are mainly used as protective glass. They can be used for applications such as dust prevention, fog prevention, and waterproofing, and for the protection of core components from direct contamination.\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"line-height: 1.75;\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">\u003Cimg style=\"display: block; margin-left: auto; margin-right: auto;\" src=\"https://images.lbtek.com/FlI-beW1vi-l-_UWe_Sx2y1pM0zF\" alt=\"\" width=\"300\">\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-align: center; line-height: 1.75;\">\u003Cspan style=\"font-family: 'microsoft yahei'; font-size: 10pt;\">\u003Cspan style=\"font-family: 微软雅黑;\">Figure\u003C/span>1 Optical Diagram of Window Wafer.\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-indent: 0pt; line-height: 1.75;\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">\u003C!-- [if !supportLists]-->II. \u003C!--[endif]-->Features\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"margin-left: 21pt; text-indent: 21pt; line-height: 1.75;\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">\u003C!-- [if !supportLists]-->1.\u003C!--[endif]-->Images passing through will not be distorted, and the shape of the laser remains unchanged;\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"margin-left: 21pt; text-indent: 21pt; line-height: 1.75;\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">\u003C!-- [if !supportLists]-->2.\u003C!--[endif]-->Propagation angle of the beam remains unchanged;\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"margin-left: 21pt; text-indent: 21pt; line-height: 1.75;\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">\u003C!-- [if !supportLists]-->3.\u003C!--[endif]-->The magnification of the optical system after passing through the window wafer remains unchanged;\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"margin-left: 21pt; text-indent: 21pt; line-height: 1.75;\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">\u003C!-- [if !supportLists]-->4.\u003C!--[endif]-->Coating can be applied to improve transmission rate;\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-indent: 0pt; line-height: 1.75;\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">\u003C!-- [if !supportLists]-->III. \u003C!--[endif]-->Explanation\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-indent: 21pt; line-height: 1.75;\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">LBTEK window wafers are mainly made of materials such as zinc selenide, germanium, sapphire, and calcium fluoride.\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-indent: 21pt; line-height: 1.75;\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">Zinc Selenide Window Wafer:\u003C/span>\u003C/p>\n\u003Cp class=\"p\">\u003Cspan style=\"font-size: 10pt;\">\u003Cspan style=\"font-family: 微软雅黑;\"> Its working wavelength is from visible light to 20 µm, and zinc selenide material is isotropic, \u003C/span>\u003Cspan style=\"font-family: 微软雅黑;\">non-hygroscopic, \u003C/span>\u003Cspan style=\"font-family: 微软雅黑;\">and with no birefringence phenomenon. The surface reflectance of uncoated zinc selenide is about 17% per face, and there is about a 30% transmission loss after passing through an uncoated zinc selenide window wafer. Zinc selenide is a harmful and \u003C/span>\u003Cspan style=\"font-family: 微软雅黑;\">irritating\u003C/span>\u003Cspan style=\"font-family: 微软雅黑;\"> \u003C/span>\u003Cspan style=\"font-family: 微软雅黑;\">substance, and can produce toxic hydrogen selenide when exposed to strong acids or strong laser irradiation, which can irritate human eyes, respiratory tract mucosa, and cause dermatitis if the skin is in direct contact frequently. It is necessary to wear a filtering dust mask, chemical safety goggles, and anti-infiltration work clothes during operation.\u003C/span>\u003C/span>\u003C/p>\n\u003Cp class=\"p\">\u003Cspan style=\"font-family: 微软雅黑; font-size: 10pt;\"> Germanium Window Wafer:\u003C/span>\u003C/p>\n\u003Cp class=\"p\">\u003Cspan style=\"font-family: 微软雅黑; font-size: 10pt;\"> Germanium window wafer's working wavelength is in 600 nm-16 µm infrared band iwth very little absorption, and it has a certain absorption and filtering effect on 1.5 µm beam. The surface reflectance of uncoated germanium window wafer is about 35% loss per face, and the loss after passing through an uncoated germanium window wafer is about 59%. The spectral transmittance of germanium is very sensitive to temperature, with a wavelength transmittance at an environmental temperature of 100°. The spectral transmittance of germanium is very sensitive to temperature; at an environmental temperature of 100°C, the material's absorption becomes so great that it is almost opaque, and at an environmental temperature of 200°C, it is completely opaque. Germanium material contains harmful substances, and it is necessary to wear gloves, filtering dust masks, chemical safety goggles, and anti-infiltration work clothes during operation, and wash hands after operation.\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\">\u003Cspan style=\"font-family: 微软雅黑; font-size: 10pt;\"> Sapphire Window Wafer:\u003C/span>\u003C/p>\n\u003Cp class=\"p\">\u003Cspan style=\"font-family: 微软雅黑; font-size: 10pt;\"> Sapphire window wafer's working wavelength is from 400 nm-5000 nm with no absorption within this working band, and birefringence phenomenon occurs when the beam propagates within the sapphire window wafer. The surface reflectance of uncoated sapphire window wafer is about 8% per face, and the transmission rate after passing through an uncoated sapphire window wafer is about 85%. Sapphire has a very high surface hardness and can only be scratched by a few substances. Sapphire has good thermal resistance and weather resistance, and its chemical properties are stable, even at the highest temperature of 1000°C, it is not soluble in water, common acids, and bases. Natural sapphire appears bright blue due to the presence of iron or titanium metal ions in the crystal, and sometimes emits fluorescence under ultraviolet light irradiation, while synthetic sapphire is colorless and transparent.\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\">\u003Cspan style=\"font-family: 微软雅黑; font-size: 10pt;\"> Calcium Fluoride Window Wafer:\u003C/span>\u003C/p>\n\u003Cp class=\"p\">\u003Cspan style=\"font-family: 微软雅黑; font-size: 10pt;\"> Its working wavelength is from180 nm-8000 nm, with good transmission in the ultraviolet wavelength. Calcium fluoride material is isotropic, and birefringence phenomenon does not easily occur when the beam propagates in the calcium fluoride window wafer. The reflectance of uncoated calcium fluoride window wafer is about 3% per face, and the transmission rate after passing through an uncoated calcium fluoride window wafer is about 94%. Calcium fluoride has high moisture resistance, low dispersion (Abbe number 95), and low fluorescence characteristics (a small amount of impurities), and has good waterproof, chemical resistance, and thermal resistance. However, it has low hardness, is easily scratched, and degrades when used in high humidity environments if the temperature exceeds 600°C.\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\">\u003Cspan style=\"font-family: 微软雅黑; font-size: 10pt;\"> N-BK7 Window Wafer:\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\">\u003Cspan style=\"font-family: 微软雅黑; font-size: 10pt;\"> Its working wavelength is from 350nm-2000nm, and it is usually chosen when the advantages of ultraviolet fused quartz (i.e., better transmission in the ultraviolet region and a smaller coefficient of thermal expansion) are not required. These window wafers can be uncoated (350 nm-2.0 µm) or coated with one of our three anti-reflective films on both optical surfaces. The typical loss of uncoated window wafers is about 4% per surface, while the anti-reflective film reduces this loss to Ravg< 0.5% on each surface within the specified wavelength range and performs well for incidence between 0° and 30°.\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\">\u003Cspan style=\"font-family: 微软雅黑; font-size: 10pt;\"> Ultraviolet Fused Quartz Window Wafer:\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\">\u003Cspan style=\"font-family: 微软雅黑; font-size: 10pt;\"> Its working wavelength is from190nm-2100nm, and ultraviolet fused quartz is very suitable for applications that require higher transmission in the deep ultraviolet band than N-BK7. Compared with N-BK7, ultraviolet fused quartz has a lower refractive index, better uniformity, and lower coefficient of thermal expansion at a given wavelength. The loss of uncoated window wafers is 4% per surface, and the anti-reflective film reduces the surface loss to Ravg<0.5%. The anti-reflective film performs best when the incidence angle is between 0° and 30°.\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\">\u003Cspan style=\"font-family: 微软雅黑; font-size: 10pt;\"> Silicon Window Wafer:\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\">\u003Cspan style=\"font-family: 微软雅黑; font-size: 10pt;\"> Its working wavelength is from1.2 µm-8 µm. Silicon-based material has a small density (half the density of other materials or zinc selenide materials), relatively light in weight, and silicon optical components are harder than germanium. Silicon has a high thermal conductivity and low density, making it suitable for making laser reflection mirrors. However, due to the strong absorption of silicon at the 9-micrometer wavelength, it is not suitable for carbon dioxide laser transmission applications.\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-indent: 0.0000pt; mso-char-indent-count: 0.0000; text-autospace: ideograph-numeric; mso-pagination: none; line-height: 28.0000pt; mso-line-height-rule: exactly;\">\u003Cspan style=\"mso-spacerun: 'yes'; font-family: 微软雅黑; font-size: 10.5000pt; mso-font-kerning: 1.0000pt;\">IV. Anti-reflective Coating\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-indent: 21pt; line-height: 1.75;\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">\u003Cspan style=\"font-family: 微软雅黑;\">Anti-reflective coating is a hard and heat-resistant oxide film. After coating optical components, the reflection within a specific wavelength range can be minimized. It is usually required that the coating thickness must be an odd multiple of \u003C/span>1/4 \u003Cspan style=\"font-family: 微软雅黑;\">of the design wavelength. This design makes the reflected beams between two adjacent reflection surfaces have a path difference of half a wavelength, thereby reducing the impact of reflection. The commonly used anti-reflective coating material in LBTEK company is magnesium fluoride (n=1.38), and other anti-reflective coating materials can also be customized.\u003C/span>\u003C/span>\u003C/p>\n\u003Cp class=\"MsoNormal\" style=\"text-indent: 21pt; line-height: 1.75;\">\u003Cspan style=\"font-size: 10pt; font-family: 'microsoft yahei';\">\u003Cspan style=\"font-family: 微软雅黑;\">In an uncoated optical system, each optical surface will have about \u003C/span>4% \u003Cspan style=\"font-family: 微软雅黑;\">(reflectance:\u003C/span>\u003Cimg src=\"https://images.lbtek.com/FiIhZZiBp5CXcDwZaw1IIpyHbQHt\" alt=\"\" width=\"63\" height=\"41\">\u003Cspan style=\"font-family: 'microsoft yahei'; font-size: 10pt; text-indent: 21pt;\">, where \u003C/span>\u003Cspan style=\"font-family: 'microsoft yahei'; font-size: 10pt; text-indent: 21pt;\">n is the refractive index of the material, 1 is the refractive index of air) loss of light energy, transmission rate=\u003C/span>\u003Cimg src=\"https://images.lbtek.com/FjjidSj_YwB-73qNdr4iogzngO9d\" alt=\"\" width=\"76\" height=\"48\">\u003Cspan style=\"text-indent: 21pt; font-size: 10pt; font-family: 微软雅黑;\">. In an optical system, \u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\"> the loss of light energy is\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">(\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">1-0.96\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">(\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">Nx2\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">))\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">x100% \u003C/span>\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-size: 10pt; font-family: 微软雅黑;\">if there are \u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">N lenses uncoated\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">. If each optical device surface is coated with an anti-reflective film (N-BK7 substrate 400\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\"> \u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">nm-700\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\"> \u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">nm average reflectance less than 0.4%, 700\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\"> \u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">nm-1100\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\"> \u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">nm average reflectance less than 0.3%, 1100\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\"> \u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">nm-1650\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\"> \u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">nm average reflectance less than 0.6%), using coated C film (1100\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\"> \u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">nm-1650\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\"> \u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">nm) N lenses, the light energy loss after passing through N coated C film lenses is\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">:(\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">1-0.996\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">(\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">Nx2\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">))\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">X100%. If a light path system uses 4 lenses, the light energy loss of uncoated lenses is\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">:\u003C/span>\u003Cspan style=\"text-indent: 21pt; font-family: 'microsoft yahei'; font-size: 10pt;\">27.9%, and the light energy loss after C film is less than 3.2%. Therefore, coating with an anti-reflective film can significantly improve transmission rate and reduce the light energy loss caused by the surface of the lens.\u003C/span>\u003C/p>",{"productTabNameId":95,"tabName":240},"Tutorial",{"id":242,"listId":78,"productTabNameId":173,"langInfo":243,"tabNameLangInfo":245},451,{"productTabId":242,"tabContent":244},"\u003Cp> \u003C/p>\n\u003Cp>\u003Cimg class=\"wscnph\" src=\"https://images.lbtek.com/FuR4vQy9r_iqaXs_w0wqBOxn3HPX\" />\u003C/p>\n\u003Ctable>\n\u003Ctbody>\n\u003Ctr>\n\u003Ctd width=\"153\">\n\u003Cp>① 30 mm coaxial mounting plate \u003Cu>OPM-12.5A\u003C/u> (with retaining ring) ×1\u003C/p>\n\u003C/td>\n\u003Ctd width=\"153\">\n\u003Cp>② Ø25.4 mm window ×1\u003C/p>\n\u003C/td>\n\u003Ctd width=\"114\">\n\u003Cp>③ Retaining ring \u003Cu>SM1R\u003C/u> ×1\u003C/p>\n\u003C/td>\n\u003Ctd width=\"114\">\n\u003Cp>④ Retaining ring wrench \u003Cu>OWR-1A\u003C/u> ×1\u003C/p>\n\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n\u003C/table>\n\u003Cp>\u003Cstrong>LBTEK\u003C/strong> Ø25.4 mm window can be fixed and installed via coaxial mounting plate\u003C/p>\n\u003Cp> \u003C/p>\n\u003Cp>\u003Cimg class=\"wscnph\" src=\"https://images.lbtek.com/FsTUu3zBsy9ZOy3MJJwfxAyDvKfo\" />\u003C/p>\n\u003Ctable>\n\u003Ctbody>\n\u003Ctr>\n\u003Ctd width=\"153\">\n\u003Cp>① Ø25.4 mm lens tube \u003Cu>SM1-12.5A\u003C/u> (with retaining ring) ×1\u003C/p>\n\u003C/td>\n\u003Ctd width=\"153\">\n\u003Cp>② Ø25.4 mm window ×1\u003C/p>\n\u003C/td>\n\u003Ctd width=\"114\">\n\u003Cp>③ Retaining ring \u003Cu>SM1R\u003C/u> ×1\u003C/p>\n\u003C/td>\n\u003Ctd width=\"114\">\n\u003Cp>④ Retaining ring wrench \u003Cu>OWR-1A\u003C/u> ×1\u003C/p>\n\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n\u003C/table>\n\u003Cp>\u003Cstrong>LBTEK\u003C/strong> Window lens tube fixed installation method\u003C/p>\n\u003Cp>\u003Cimg class=\"wscnph\" src=\"https://images.lbtek.com/FpmmtiRWLAV_RBUrBsYn-Tr3WcvJ\" />\u003C/p>\n\u003Ctable>\n\u003Ctbody>\n\u003Ctr>\n\u003Ctd width=\"165\">\n\u003Cp>① Fixed lens mount \u003Cu>FLF1\u003C/u> (with retaining ring) ×1\u003C/p>\n\u003C/td>\n\u003Ctd width=\"140\">\n\u003Cp>② Ø25.4 mm window ×1\u003C/p>\n\u003C/td>\n\u003Ctd width=\"114\">\n\u003Cp>③ Retaining ring \u003Cu>SM1R\u003C/u> ×1\u003C/p>\n\u003C/td>\n\u003Ctd width=\"114\">\n\u003Cp>④ Retaining ring wrench \u003Cu>OWR-1A\u003C/u> ×1\u003C/p>\n\u003C/td>\n\u003C/tr>\n\u003C/tbody>\n\u003C/table>\n\u003Cp>\u003Cstrong>LBTEK\u003C/strong> Window fixed mount installation method\u003C/p>",{"productTabNameId":173,"tabName":246},"Assembly",["Reactive",248],{"$snuxt-i18n-meta":249},{},["Set"],["ShallowReactive",252],{"$fvpUpa8LH8tCwp-18lSLZ5DkPh0mhQrRmdb45RQuidoo":-1,"$fKUUIOjAeSHVCatg9x5tBVcMjPfqAmR42SkHRWrV1m4k":-1,"$f3jfwRr7OZxHACI0iX_Cz2hK3obVg3St3kAnPAV6LwVU":-1},"/product/69?fid=28&tid=70",{"myAppGlobalStore":255,"myAppCartStore":268,"MetayImgPreviewStore":274,"myServiceModalStore":280,"myAppCompareStore":282},{"sessionId":256,"token":257,"surveyLink":259,"navCategory":260,"topAds":263,"feedbackType":265},["Ref",75],["EmptyRef",258],"_",["Ref",74],["Ref",261],["Reactive",262],[14,19,24,29,34,39,44,49,54,59,64],["Ref",264],["Reactive",12],["Ref",266],["Reactive",267],[],{"cartNum":269,"cartData":271},["EmptyRef",270],"0",["Ref",272],["Reactive",273],{},{"visible":275,"previreList":277},["EmptyRef",276],"false",["Ref",278],["Reactive",279],[],{"visible":281},["EmptyRef",276],{"compareIds":283,"compareList":286,"compareVisible":289},["Ref",284],["Reactive",285],[],["Ref",287],["Reactive",288],[],["EmptyRef",276]]